

SIDDHARTH INSTITUTE OF ENGINEERING AND TECHNOLOGY:PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code: NUMERICAL METHODS, PROBABILITY & STATISTICS (20HS0833)

Year & Sem: II B.Tech-I sem

Course & Branch: B.Tech-ME

Regulation: R20

UNIT –I NUMERICAL SOLUTION OF ALGEBRAIC AND TRANSCENDENTAL EQUATIONS & INTERPOLATION

1	Find a positive root of the equation $x^3 - x - 1 = 0$ by Bisection method.	[L1][CO2]	[12M]
2	Find real root of the equation $3x = e^x$ by Bisection method.	[L1][CO1]	[12M]
3	Find out the square root of 25 given $x_0 = 2.0$, $x_1 = 7.0$ using Bisection method.	[L1][CO2]	[12M]
4	Find a real root of the equation $xe^x - \cos x = 0$ using Newton – Raphson method.	[L1][CO1]	[12M]
5	Using Newton-Raphson method (i) Find square root of 28 (ii) Find cube root of 15.	[L3][CO2]	[12M]
6	a) Using Newton-Raphson method, find reciprocal of 12.	[L3][CO2]	[6M]
	b) Find a real root of the equation $xtanx+1=0$ using Newton – Raphson method.	[L1][CO1]	[6M]
7	Find the root of the equation $x \log_{10}(x)=1.2$ using False position method.	[L1][CO1]	[12M]
8	Find the root of the equation $x e^{x} = 2$ using Regula-falsi method.	[L1][CO1]	[12M]
9	From the following table values of x and $y=tan x$. Interpolate the values of y when $x=0.12$ and $x=0.28$. x 0.10 0.15 0.20 0.25 0.30 y 0.1003 0.1511 0.2027 0.2553 0.3093	[L5][CO1]	[12M]
10	a) Using Newton's forward interpolation formula and the given table of values	[L3][CO1]	[6M]
	b) Use Newton's backward interpolation formula to find f(32) given f(25)=0.2707, f(30)=0.3027, f(35)=0.3386, f(40)=0.3794.	[L3][CO1]	[6M]

UNIT –II NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS & NUMERICAL INTEGRATION

1	Tabulate y(0.1), y(0.2) and y(0.3) using Taylor's series method given that $y^1 = y^2 + x$ and y(0) = 1	[L6][CO3]	[12M]
2	Evaluate by Taylor's series method, find an approximate value of y at x=0.1 and 0.2 for the D.E $y^{11} + xy = 0$; $y(0) = 1$, $y^{1}(0) = 1/2$.	[L5][CO3]	[12M]
2	a) Solve $y^1 = x + y$, given y (1)=0 find y(1.1) and y(1.2) by Taylor's series method.	[L3][CO3]	[6M]
3	b) Solve by Euler's method $\frac{dy}{dx} = \frac{2y}{x}$ given y(1)=2 and find y(2)	[L6][CO3]	[6M]
4	Using Euler's method, find an approximate value of y corresponding to $x = 0.3$ given that $\frac{dy}{dx} = x + y$ and $y = 1$ when $x = 0$ taking step size $h = 0.1$	[L1][CO3]	[12M]
5	Using modified Euler's method find $y(0.2)$ and $y(0.4)$, given $y^1 = y + e^x$, $y(0) = 0$	[L3][CO3]	[12M]
	a) Solve by Euler's method $y' = y^2 + x$, $y(0)=1$.and find $y(0.1)$ and $y(0.2)$	[L3][CO3]	[6M]
6	b) Using Runge – Kutta method of fourth order, compute y(0.2) from $y^1 = xy$ y(0)=1,taking h=0.2	[L3][CO3]	[6M]
7	Using R-K method of 4 th order, solve $\frac{dy}{dx} = x^2 - y$, y(0)=1. Find y(0.1) and y(0.2).	[L3][CO3]	[12M]
8	Find y(0.1) and y(0.2). Using R-K method of 4 th order find y(0.1) and y(0.2) given that $\frac{dy}{dx} = x + y$, $y(0) = 1$.	[L3][CO3]	[12M]
9	Evaluate $\int_{0}^{1} \frac{1}{1+x} dx$ (i) by Trapezoidal rule and Simpson's $\frac{1}{3}$ rule. (ii) Using Simpson's $\frac{3}{8}$ rule and compare the result with actual value.	[L5][CO3]	[12M]
10	a) Compute $\int_{0}^{4} e^{x} dx$ by Simpson's $\frac{3}{8}$ rule with 12 sub divisions.	[L5][CO3]	[6M]
10	b) Compute $\int_0^{\pi/2} \sin x dx$ using Trapezoidal rule, Simpson's $\frac{1}{3}$ rule and compare with exact value.	[L5][CO3]	[6M]

UNIT –III BASIC STATISTICS & BASIC PROBABILITY

	 a) i) The weights of 6 competitors in a game are given below 58,62,56,63,55,61 kgs. Find arithmetic mean of weight of competitors. ii) Find the median of the following values 26, 8, 6, 12, 15, 32. 	[L3][CO4] [L1][CO4]	[3M] [3M]
1	b) Find arithmetic mean to the following data using step deviation method Marks 10-20 20-30 30-40 40-50 50-60 frequency 5 8 25 22 10	[L1][CO4]	[6M]
	a) Find the median to the following data Class intervals 40-50 50-60 60-70 70-80 80-90 frequency 5 12 23 8 2	[L1][CO4]	[6M]
2	b) Find arithmetic mean to the following data x 1 2 3 4 5 f 5 8 10 12 6	[L1][CO4]	[6M]
	a) Find mode to the following data X 0-5 5-10 10-15 15-20 20-25 25-30 30-35 35-40 F 5 7 10 18 20 12 8 2	[L1][CO4]	[6M]
3	b) Find the median to the following data. x 5 8 11 14 17 20 23 f 2 8 12 20 10 6 3	[L1][CO4]	[6M]
	a) Obtain mode of the values 10,12,15,20,12,16,18,15,12,10,16,20,12,24.	[L3][CO4]	[6M]
4	b) The first four moments of a distribution about the value 5 of the variables are 2, 20, 40 and 50. Calculate mean, variance, β_1 and β_2 of the distribution.	[L5][CO4]	[6M]
5	X 0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90 90-100 F 2 6 11 20 40 75 45 25 18 8	[L6][CO4]	[12M]
6	Compute the first four central moments to the following data and also find Sheppard's correction, β_1 and β_2 Class intervals 0-10 10-20 20-30 30-40 40-50 50-60 60-70 frequency 2 8 12 40 20 15 3	[L6][CO4]	[12M]
	a) Three students A,B,C are in running race. A and B have the same Probability of winning and each is twice as likely to win as C. Find the Probability that B or C wins.	[L6][CO4]	[6M]
7	b) Determine (i) $P(B/A)$ (ii) $P(A/B^c)$ if A and B are events with $P(A) = \frac{1}{3} P(B) = \frac{1}{4}, P(AUB) = \frac{1}{2}.$	[L5][CO4]	[6M]
8	a) In a certain town 40% have brown hair, 25% have brown eyes and 15% have both brown hair and brown eyes. A person is selected at random from the town.i) If he has brown hair, what is the probability that he has brown eyes also?ii) If he has brown eyes, determine the probability, that he does not have brown hair?	[L1][CO4]	[6M]
	b) The probability that students A, B, C, solve the problem are $\frac{1}{3}$, $\frac{2}{5}$, $\frac{1}{5}$ and $\frac{1}{4}$ respectively If all of them try to solve the problem, what is the	[L6][CO4]	[6M]

Course Code: 20HS0833

D	7	Λ
1	4	U

	probability that the problem is solved.		
9	Two dice are thrown. Let A be the event that the sum of the point on the faces is 9. Let B be the event that at least one number is 6. Find (i) $P(A \cap B)$ (ii) $P(A \cup B)$ (iii) $P(A^c \cup B^c)$ (iv) $P(A^c \cap B^c)$ (v) $P(A \cap B^c)$	[L1][CO4]	[12M]
10	In a certain college 25% of boys and 10% of girls are studying mathematics. The girls Constitute 60% of the student body. (a) What is the probability that mathematics is being studied? (b) If a student is selected at random and is found to be studying mathematics, find the probability that the student is a girl? (c) a boy?	[L6][CO4]	[12M]

UNIT –IV RANDOM VARIABLES

1	Two dice are thrown. Let X assign to each point (a, b) in S the maximum of its numbers i.e, $X(a, b) = \max(a, b)$. Find the probability distribution. X is a random variable with $X(s)=\{1,2,3,4,5,6\}$. Also find the mean and variance of the distribution A random variable X has the following probability function												[12M]
2	A rando	[L5][CO5]	[12M]										
		rmine (i) Minimu	ım va	lue of	K								
	a) Find given b	[L1][CO5]	[6M]										
3	b) If a random variable has a Probability density $f(x)$ as $f(x) = \begin{cases} 2e^{-2x}, & \text{for } x > 0 \\ 0, & \text{for } x \le 0 \end{cases}$ Find the Probabilities that it will take on a value (i) Between 1 & 3 (ii) Greater than 0.5											[L6][CO5]	[6M]
4	Probability density function of a random variable X is $f(x) = \begin{cases} \frac{1}{2} \sin x, & \text{for } 0 \le x \le \pi \\ 0, & \text{elsewhere} \end{cases}$ Find the mean, mode and median of the distribution and also find the probability between 0 and $\frac{\pi}{2}$.										[L6][CO5]	[12M]	
5	a) Probability density function $f(x) = \begin{cases} k(3x^2 - 1), in - 1 \le x \le 2\\ 0, elsewhere \end{cases}$. (i) Find the value of k. (ii) Find the probability $(-1 \le x \le 0)$											[L1][CO5]	[6M]
	b) The probability density function of a random variable x is $f(x) = \begin{cases} kx(x-1); 1 \le x \le 4 \\ 0; elsewhere \end{cases}$ And $P(1 \le x \le 3) = \frac{28}{3}$ Find the value of k.											[L6][CO5]	[6M]
6	For the continuous probability function $f(x) = \begin{cases} kx^2e^{-x} & \text{when } x \ge 0 \\ 0 & \text{; elsewhere} \end{cases}$ Find i) k ii) Mean iii) Variance.											[L1][CO5]	[12M]
	a) Defin	a) Define Probability density function.									[L1][CO5]	[2M]	
7	F(x)	$ \begin{aligned} &\text{ntinuous} \\ &= \begin{cases} k(x) \\ k(x) \\ k(x) \end{aligned} \end{aligned} $	$0 i - 1 \\ 0$	$\begin{cases} f & x \leq 4 \\ 4 & ; 1 \\ ; & x > 4 \end{cases}$	≤ 1 < <i>x</i> ≤	3						[L6][CO5]	[10M]
8	a) Defin	ne Probal	oility	Distri	bution	functio	ons.					[L1][CO5]	[2M]

Course Code: 20HS0833

|--|

	b) A random variable x has the following probability distribution													
		X	1	2	3	4		5	6					
		P(x)	k	3k	5k	7k	9	9k	11k				[L6][CO5]	[10M]
		Fi	ind i	k ii) l	Mean i	ii) Va	riance	e.						
	A random variable x has the following probability distribution function													
		X	-3	-2	-1	()	1	2	,	3		FT 61500 51	5403.53
9		P(x)	k	0.1	k	0.	.2	2k	0.	4	2k		[L6][CO5]	[12M]
		Fi	ind i	k ii) l	Mean i	ii) Va	riance	е.						
	A random variable x has the following probability distribution function													
10		X	1	2	3	4	5	6	5	7	8		FT 43FG0 F3	54.03.53
10		P(x)	k	2k	3k	4k	5k	61	k	7k	8k		[L1][CO5]	[12M]
	•	Fi	ind i	k ii) I	P(X≤2)	iii) P	(2≤x≤	≤5).	•			_		

Course Code: 20HS0833

R20

UNIT –V PROBABILITY DISTRIBUTIONS AND CORRELATION

	a) Derive mean and variance of Binomial distribution.	[L3][CO5]	[6M]
1	b) 20% of items produced from a factory are defective. Find the probability that in a sample of 5 chosen at random (i) one is defective (ii) $p(1 < x < 4)$	[L6][CO5]	[6M]
	Fit a Binomial distribution to the following frequency distribution:		
2	x 0 1 2 3 4 5	[L5][CO5]	[12M]
	f 2 14 20 34 22 8		
3	Out of 800 families with 5 children each, how many would you expect to have (i) 3 boys (ii) 5 girls (iii) either 2 or 3boys iv) At least one boy	[L5][CO5]	[12M]
	a) If 2% of light bulbs are defective. Find the probability that	[L1][CO5]	[6M]
	(i) At least one is defective (ii) $p(1 < x < 8)$ in a sample of 100.		[OIVI]
4	b) If for a poisson variate $2P(X=0)=P(X=2)$ Find the probability that i) $P(X \le 3)$ ii) $P(2 \le X \le 5)$ iii) $P(X \ge 3)$.	[L1][CO5]	[6M]
	Fit a Poisson distribution to the following data		
_	x 0 1 2 3 4 5 Total	[L5][CO5]	[12M]
5	f 142 156 69 27 5 1 400		
	In a sample of 1000 cases, the mean of certain test is 14 and standard		
6	deviation is 2.5. Assuming the distribution to be normal find	[L6][CO5]	[12M]
	(i) how many students score between 12 and 15.(ii) How many students score above 18? (iii) How many students score below 18?		
	a) The probability of poisson variate taking the values 1&2 are equal.		
_	Find i) μ ii) $P(X \ge 1)$ iii) $P(1 < X < 4)$.	[L1][CO5]	[6M]
7	b) If X is a normal variate with mean 30 and standard deviation 5.	[] 1][CO5]	[6M]
	Find the probability that i) $26 \le X \le 40$ ii) $X \ge 45$.	[L1][CO5]	[6M]
	Calculate Correlation coefficient to the following data		[12M]
8	X 10 15 12 17 13 16 24 14 22 20 X	[L5][CO6]	
	Y 30 42 45 46 33 34 40 35 39 38		
	Ten competitors in a musical test were ranked by the three judges A,B and C in the		
	following order:		
	Ranks by A 1 6 5 10 3 2 4 9 7 8 Ranks by B 3 5 8 4 7 10 2 1 6 9	[L3][CO6]	[12M]
9	Ranks by C 6 4 9 8 1 2 3 10 5 7		[1211]
	Using rank Correlation coefficient method, discuss which pair of judges has		
	the nearest approach to common likings in music.		
10	Find two regression equations from the following data: X 10 25 34 42 37 35 36 45	H 111000	F1 43 47
10	X 10 25 34 42 37 35 36 45 Y 56 64 63 58 73 75 82 77	[L1][CO6]	[12M]
	1 30 07 03 30 13 13 02 11		

Prepared by: K.SUBHASHINI